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Abstract A common type of device for wave-energy extraction is an oscillating water column (OWC)
with a compression chamber. Peak performance of most OWC systems occurs at resonance with the driving
waves. At resonance, oscillations increase linearly in time until damping inhibits further growth. Paramet-
ric resonance is introduced as a means of exciting the oscillations of the water column. In parametric
resonance, oscillations increase exponentially in time. The use of this kind of resonance may increase the
performance of OWC systems. This type of resonance occurs when one of the parameters in an oscilla-
tor varies periodically. Asymptotic methods are used to study the nonlinear dynamics of an OWC with
parametric resonance. These results are compared with those of a numerical model of a real experimental
laboratory setup.

Keywords Multiple-scale method · Nonlinear oscillations · Oscillating water column ·
Parametric resonance

1 Introduction

Harnessing the energy of ocean waves has long sparked the imagination of those witnessing the end-
less battering of waves on beaches and coasts. In the past decades, significant advances to convert this
energy to electric power have been made possible thanks to the advent of sophisticated computing
and hardware technologies, although widespread economically competitive and storm-proof devices re-
main mostly elusive. Highly ingenious devices have been proposed by Salter [1], McCormick [2], the
Kvaerner OWC [3], etc. Since 2003, the Dragon, a floating device which amplifies waves and spills
run-up water into a reservoir which feeds conventional turbines, has been producing electric power
successfully and feeding the Danish grid on a commercial basis [4]. Pelamis, a promising device which
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comprises a series of semi-submerged articulated cylinders with power hydraulic compressors at the
joints is at the prototype level [5]. Submerged buoys which drive the stators of linear electrical gen-
erators are also being tested [6]. Although there is much potential in waves as an alternative energy
source, serious setbacks to the necessary research have been experienced in the past when some of
these devices were destroyed by storms. Much research is now being directed to build storm-resistant
devices.

One class of devices which have received much attention are based on a wave-driven oscillating water
column (OWC) which compresses air in a chamber and forces it through a turbine to produce electricity.
The development of these devices dates from the 1950s when Masuda [7] powered navigation signaling
buoys with OWC-driven turbines. Falnes [8, pp. 225–259] pioneered theoretical studies of OWCs and
showed that they are in effect mechanic oscillators forced by the wave-pressure signal. At present, various
OWC-driven power-generating prototypes are being tested at Pico Island [9, 10] and on the northern Irish
coast [11].

OWC-driven devices operate optimally at resonance when their natural frequency of oscillation coin-
cides with that of the most energetic waves. Phase-locking mechanisms have been developed to increase
their performance by taking advantage of wave energy, even when the devices are out of resonance [3].
Alternatively, dynamic tuning devices, based on a variable volume-air compression chamber, have been
developed to maintain a resonant condition despite variations in the wave spectra to the most energetic
waves [12].

Efficiency in wave-energy devices can also be substantially increased if the useful end-product energy is
of an equivalent type (kinetic–kinetic). As an alternative application to electric generation, an oscillating
water-column wave-driven seawater pump, which has potential for various coastal management purposes,
such as the cleaning of contaminated areas and aquaculture, has been under development since the 1990s
at the National University of Mexico [12]. A schematic diagram of the seawater pump can be seen in Fig. 1.
The wave-induced pressure signal at the mouth of the resonant duct drives an oscillating flow that spills
water into the compression chamber, and through the exhaust duct to the receiving body of water, with each
passing wave. Air in the chamber behaves like a spring against which water in the resonant and exhaust
ducts oscillates. Maximum efficiency at resonance can be maintained for different wave frequencies by
means of a variable-volume compression chamber that adjusts the hardness of the air spring. In this paper,
we explore alternatives to diversify the uses and the efficiency of such OWC seawater pumps.

In an oscillator, the normal modes of oscillation are a function of several parameters, such as the mass
and the spring constant. When one of these parameters changes periodically, a small perturbation, under
certain circumstances, can grow exponentially in time. This phenomenon is known as ‘parametric reso-
nance’ [13, pp. 80–84]. In classical mechanics, it is known that, when this type of resonance occurs, energy
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Fig. 3 Parametric excitation of an OWC. The compres-
sion chamber is perturbed by the action of the piston

is transferred with much greater efficiency than in ordinary resonance. A simple example of parametric
resonance is the increased oscillations in a child’s swing, in the absence of external forces. In this case, the
parameter being rhythmically changed is the length of the rope, as the child rises and lowers his center of
mass. The work exerted by the child in doing so is transformed very efficiently into mechanical oscillations.
In this paper, some basic concepts of parametric resonance are explored as a possible way of improving
the performance of OWC systems.

2 Mathematical model of an OWC

A simple model of a single oscillating water column (OWC) with a compression chamber is shown in Fig. 2.
Assuming an ideal fluid, the dynamics of the water column can be compared to a mechanical spring, where
the mass of the spring is the mass of water in the vertical column of length L + x. The restitutive forces
of the spring model are given by the gravitational force and the difference of pressure exerted by the
compression chamber. The total force is then conservative and it must be the gradient of some potential
energy V(x). The kinetic energy is given by the product of the mass of the water column (L + x)ρAc and
ẋ2/2, where Ac is the area of the column, ρ is the fluid density and ẋ is the velocity of the mass of water.
This velocity is the change in time of the water top level in the column. Therefore, the kinetic energy can
be computed as:

T = Acρ(L + x)
ẋ2

2
. (1)

The two restitutive forces, gravity and pressure in the compression chamber, maintain the water column
at level H with respect to the water level in the tank. The first force is Fg = −ρAcxg, where g is the
gravitational acceleration and ρAcx is the mass of water above (or below) the equilibrium level. If we
assume that heat exchange with the exterior is negligible, the adiabatic relation between pressure and
volume is given by PVγ = P0Vγ

0 , where P0 and V0 are the pressure and volume at the equilibrium level
(x = 0) and γ is the adiabatic constant. The restitutive force is proportional to the difference of pressure
P − P0, substituting P from the adiabatic relation and taking the volume as V = V0 − Acx, the restitutive
force due to the compression chamber, is then:

Fad= −(P−P0)Ac=−P0

((
1− Acx

V0

)−γ

− 1

)
Ac. (2)

The pressure at equilibrium level is the difference between the atmospheric pressure (PA) and the pressure
required to lift the water column to an altitude H with respect to the water level in the tank, P0 = PA−ρgH.
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The Lagrangian function of our mechanical problem is:

L = T − V , (3)

where −∂V/∂x = Fad + Fg.
Using the Euler–Lagrange equation, d

dt (∂L/∂ ẋ) − ∂L/∂x = 0, we obtain the equation of motion of the
oscillating water column:

(x+ L(1 + η))ẍ + ẋ2

2
+ gx + PA − ρgH

ρ

((
1 − Acx

V0

)−γ − 1
)

= 0, (4)

where the parameter η is a fractional added length due to edge effects at the duct mouth [14, 15].
An alternative approach to obtain Eq. (4) is to consider a streamline which connects the free water

surface (b) and the top of the water column (a) [16]. Applying the Bernoulli equation to the streamline
from the point (a) to point (b), we can derive Eq. (4).

The OWC model was designed assuming an ideal fluid. For real fluids, Knott and Flower and Czitrom
have successfully included viscous losses in this model [12, 16]. Nonlinear losses due to friction, vortex
formation and radiation damping can be included in our model in the same way using:(

K
2

+ L
D

f
)

ẋ|ẋ|, (5)

where K is the vortex-formation energy-loss coefficient, D is the resonant duct diameter, f is the oscillating-
flow friction coefficient.

In a recent publication [15] the sources of dissipation in gravity oscillations of a liquid column are
described and an equation for the energy loss is derived. From their experiments they found that the
change of the total energy (E) is a function of the velocity (ẋ):

dE
dt

= −Cẋ2|ẋ|. (6)

The total energy of our mechanical model without losses is E = T + V . Differentiating E gives:

dE
dt

= ρAcẋ
(

(x + L(1 + η))ẍ + ẋ2

2
+ 1

ρAc

∂V
∂x

)
; (7)

it can be seen that the expression in brackets coincides with the equation of motion (4). We can assume
that Eq. (4) is not strictly valid since losses are not equal to zero so that we can replace the expression in
brackets with a generic loss term G(ẋ). Equation (7) is transformed into:

dE
dt

= ρAcẋ (G(ẋ)) . (8)

Comparing this equation with (6), we conclude that G(ẋ) is proportional to ẋ|ẋ|. This form agrees with the
losses term that we proposed in (5) which shows that Lorenceau’s results are equivalent to the form for
the losses shown in (5).

Adding the nonlinear losses to Eq. (4), we obtain our basic model of the OWC dynamics:

(x + L(1 + η))ẍ + ẋ2

2
+

(
K
2

+ L
D

f
)

ẋ|ẋ| + PA − ρgH
ρ

((
1 − Acx

V0

)−γ

− 1

)
+ gx = 0. (9)

For small oscillations and assuming that x � L, we can discard the nonlinear terms such that the linear
version of (9) can be rewritten as:

ẍ + ω2
l x = 0, (10)

where ωl is the natural frequency of oscillation of our system and this is defined by

ω2
l = γ

(PA − ρgH)Ac

ρV0L(1 + η)
+ g

L(1 + η)
. (11)
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3 Parametric excitation

OWCs are normally excited externally by the waves which generate a periodic pressure signal at the lowest
point of the duct. An alternative way to excite a mechanical model is by the periodic variation of one of
the various parameters which describe the model. There are many parameters which are defined in the
mechanical model of the OWC, some of which are involved in the definition of the natural frequency of
oscillation (11). Our goal is to study the dynamics of the OWC when one of these parameters changes
periodically in time in order to understand the conditions under which parametric resonance can occur.

Out of the parameters in (11), it appears that the most practical to vary periodically is the volume of the
compression chamber. A simple implementation of this variation in volume can be described using Fig. 3.
Here, the compresion chamber is also connected to a piston which is moving periodically.

The new arrangement is similar to an OWC device described in Sect. 2 but the oscillation of the piston
modifies the volume in the compresion chamber. Including the movement of the piston in the adiabatic
terms of Eq. (9) and assuming that the piston’s displacement is periodic with amplitude bp and frequency
�, we may give the movement equation of the OWC by

(x + L(1 + η)) ẍ + ẋ2

2

(
K
2

+ L
D

f
)

ẋ|ẋ| + PA − ρgH
ρ

((
1− Acx + abp cos(�t)

V0

)−γ

− 1

)
+ gx = 0. (12)

where a is the area of the piston.
The oscillation of the piston is a new way to supply energy to the OWC. Our goal is to study the dynamics

of the oscillation of the water column due to the excitation produced by the piston movement.
Our first step is to expand Eq. (12) in terms of the periodic oscillation of the piston. In order to write

Eq. (12) in nondimentional form, we perform the following changes of the variables, Ac
V0

x → x and ω̂t → t:(
VO

L(1 + η)Ac
x + 1

)
ẍ + V0

2L(1 + η)Ac
ẋ2 + V0

L(1 + η)Ac

(
K
2

+ L
D

f
)

ẋ|ẋ|

+ (PA − ρgH)Ac

ω̂2V0L(1 + η)ρ

((
1−x−βp cos(

�

ω̂
t)

)−γ − 1
)

+ g
ω̂2L(1 + η)

x = 0. (13)

where βp = abp
V0

and ω̂ = ωl
We put a small perturbation βp in our equation, where |βp| � 1. In the same way the amplitude of

oscillation of the water column is assumed small; that is |x| � 1. We are interested in expanding the
restitutive terms of the equation of motion which correspond to the last two terms of Eq. (12) in terms
of the two small parameters, x and bp. The main point of this study is to determine which terms of the
expansion can produce resonance in the OWC since this is the most efficient mechanism to supply energy
to the oscillation of the water column. The main terms of the expansion are:

– Linear terms:[
W + g

L(1 + η)ω̂2 + (γ + 1)(γ + 2)W
4

β2
p + (γ + 1)Wβp cos

(�

ω̂
t
)

+ (γ +1)(γ +2)W
4

β2
p cos

(
2
�

ω̂
t
)
+O(β3

p)

]
x, (14)

where W = γ
(PA−ρgH)Ac
ω̂2L(1+η)ρV0

.

– Conservative nonlinear terms:
(γ + 1)W

2
x2 + (γ + 1)(γ + 2)W

6
x3 + O(x4). (15)

– Resonant forcing terms (we assume that
∣∣�
ω̂

− 1
∣∣ � 1 and |W + g

L(1+η)ω̂2 − 1| � 1):[
Wβp + (γ + 1)(γ + 2)W

8
β3

p + O(β5
p)

]
cos(�t). (16)
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– Nonresonant forcing terms:

(γ + 1)W
4

β2
p + (γ + 1)W

4
β2

p cos
(

2
�

ω̂
t
)

+ (γ + 1)(γ + 2)W
24

β3
p cos

(
3
�

ω̂
t
)

+ O(β4
p). (17)

The set of conservative nonlinear terms (15) in conjunction with the resonant forcing terms (16) behave
similar to an OWC which is excited externally by the ocean waves. Studies of this kind of wave-energy
device are described in [12] and [14]. In this paper we describe the effects of the nonlinearities on the
dynamics of the OWC. Figure 4 shows a numerical integration of (13). The initial growth of the oscillation
amplitude is modified until the amplitude becomes essentially constant after about 20 periods.

The first two linear terms in (14) are independent of βp, followed by terms which depend on βp, cos(�
ω̂

t)
and cos(2�

ω̂
t) up to order β3

p. The linear frequency is modified by a small term which depends on β2
p,

thus producing an increase. The last two terms are multiplied by a periodic function. These terms are the
main points of our study of the water-column oscillations, since they constitute a parametric excitation.
We expect that the behavior of the attained amplitude of oscillation of Eq. (12), which is shown in Fig. 4,
depends strongly on this excitation.

The mechanical implementation to produce parametric excitation in an OWC, which is shown in Fig. 3,
combines two different phenomena: resonances which come from the forcing terms and parametric reso-
nances due to the linear terms which include periodic variations of the main frequency of the water-column
oscillation. We would now like to study the nonlinear effects of the mechanical oscillation due only to
the parametric excitation. We thus do not want to include forcing terms in our model in order to obtain
nonlinear solutions which come exclusively from the parametric phenomenon. In order to have a desired
mechanical model of the OWC which only includes parametric excitations, we have to modify the external
perturbation of the compression chamber. We would like to find a mechanism which produces periodic
variations of the compression chamber volume V0. The physical implementation of this kind of device is
more complex than a simple piston because it is necessary to modify the amount of air which is contained in
the chamber (the number of moles in the chamber). With this setup, the volume is perturbed in a periodical
way: V = V0 + abp cos(�t). The equation of motion of the OWC now becomes:

(x + L(1 + η)) ẍ + ẋ2

2
+

(
K
2

+ L
D

f
)

ẋ|ẋ| + PA−ρgH
ρ

((
1− Acx

V0 + abp cos(�t)

)−γ

−1

)
+ gx = 0. (18)
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Fig. 4 Time evolution of the solution of Eq. (12). The vertical axis correspond to the amplitude of the oscillation
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We proceed to analyze this equation similar to the previous case. The corresponding adimensional
equation is the following:(

V0

L(1 + η)Ac
x + 1

)
ẍ + V0

2AcL(1 + η)
ẋ2 + V0

AcL(1 + η)

(
K
2

+ L
D

f
)

ẋ|ẋ|

+ (PA − ρgH)Ac

ω̂2V0L(1 + η)ρ

((
1 − x

1 + βp cos(�
ω̂

t)

)−γ

− 1

)
+ g

ω̂2L(1 + η)
x = 0. (19)

Let us suppose that x and βp are very small in magnitude. Expanding the restitutive terms of
Eq. (19) in terms of βp and x, we obtain the main terms obtained are

– Linear terms:[
W + g

ω̂2L(1 + η)
+ W

2
β2

p − Wβp cos
(�

ω̂
t
)

+ W
2

β2
p cos

(
2
�

ω̂
t
)

+ O
(
β3

p

)]
x. (20)

– Conservative nonlinear terms are the same as Eq. (15) up to first order.

It is important to notice that there are no forcing terms in this expansion. Therefore, the volume pertur-
bation that we introduced in Eq. (19) has parametric excitation exclusively. This model allows us to study
the parametric excitation on an OWC alone.

A mechanical implementation of the periodic volume perturbation in the compression chamber is more
complex than the perturbation with a simple piston attached to the compression chamber. A proposed
mechanical device is described using Fig. 5. Here, the main compression chamber is connected to an
adjacent volume of air by means of a valve. When this valve is open, the total volume of air increases,
softening the air-spring restoring force. In this way, opening and closing the air valve modifies the air-spring
constant, thereby changing one of the parameters of the system. The piston shown in Fig. 5 would be used
to modify the equilibrium level of the water-column surface to compensate for variations produced by the
valve.

In Fig. 6, a full cycle of oscillation is shown as an aid to describe one way in which parametric resonance
could be induced using the device shown in Fig. 5. The cycle is divided into four sections as follows. In the
first quarter, that is, when the water level descends from (I) before reaching the equilibrium level at (II),
the air valve in Fig. 5 is closed so that the spring is harder, forcing the water column down faster than if
the valve were open. Nevertheless, closing the valve at the highest point (I), raises the equilibrium level of
the water-column surface to point A, above the reference level at point B. In order to take advantage of
the increased potential energy of the hardened spring, we must restore the equilibrium level during this
part of the cycle, to reference point B, by pushing the piston (P) in Fig. 5, an appropriate displacement. By
doing this, the kinetic energy of the system, when the water level reaches (II), will be greater than if the
valve had been left open, at the expense of the work performed by the piston. It must be noted that the
work done by the piston corresponds to the energy supplied to the mechanical system.

In the next quarter cycle, that is, from (II) to (III), the valve is now opened to soften the air spring, so
that the kinetic energy at point II will transform into a greater displacement at point III. Opening the valve
at point II, however, lowers the equilibrium level to point C so that the piston must be extracted to restore
this point to B.

During the remaining two quarter-cycles, that is from (III) to (IV) and from (IV) to (V), the air valve
and the piston are operated in a similar way. The aim is to harden the air spring when the speed of the
water column is increasing and soften it when the speed is decreasing. External work is done by pushing
and pulling the piston, in order to keep the average equilibrium level fixed.

When the spring is soft, the natural frequency of oscillation can be defined as ω− which is smaller than
ω0 by a certain 	ω, which depends on the relative size of the two air chambers connected by the valve.
In a similar way, when the spring is hard, the corresponding frequency is ω+. When the process described
in the previous two paragraphs is followed, it can be shown that the oscillation amplitude will increase by
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(ω+/ω−)2 > 1 from cycle to cycle. That is, the increase is proportional to the amplitude of the previous
cycle so that there is an exponential increase in time. It is clear that the energy required by the mechanical
system to increase the amplitude of the oscillation comes from the work performed by the piston. The
piston injects energy to our system two times every cycle. Parametric resonance is an optimal way to supply
energy to any system because all this energy is used to increase the kinetic energy of the mechanical system.

In the next section we study the mechanical response of the water column when we only consider the
linear term of Eq. (18), in which case the linear frequency is modified in a periodic way. This kind of
phenomenon is studied by Floquet theory.

The nonlinear terms limit the growth of the amplitude of oscillation to a maximum value. The main goal
of our task is to determine how this maximum value depends on the nonlinear terms of Eq. (18). The next
section is devoted to examining the main features of the parametric resonance in the linear case. In Sects.
5 and 6 we study the effect of other nonlinear terms on parametric resonance.

4 Linear approximation and the Floquet method

In this section we simplify the mechanical model of the OWC such that we only take into account the linear
terms in x, ẋ and ẍ. Using the linear part of Eq. (19) (where we take only into account the first harmonic of
Eq. (20)) we obtain a simple differential equation for the dynamics of the water column:

ẍ +
[

W + g
ω̂2L(1 + η)

+ W
2

β2
p − Wβp cos

(�

ω̂
t
)]

x = 0. (21)

It is possible to simplify the previous equation, by defining

ω2
0 = W + g

ω̂2L(1 + η)
+ W

2
β2

p (22)

and

β = −Wβp,
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where ω̂2(W + g
ω̂2L(1+η)

) corresponds to the natural frequency (11) of (9) for small oscillations. Then,
Eq. (21) can be written like Mathieu’s equation:

ẍ +
(

ω2
0 + β cos

(
�

ω0
t
))

x = 0, (23)

The solution of this equation can be obtained through the Floquet theory [17]. It is well known that the
solution of this equation is the product of a periodic function with period 2πω0/� and an exponential func-
tion. Using Floquet theory, the form of the parameter which appears in the argument of the exponential
function can be found. For a real parameter, the solution grows exponentially in time so that the solution
is unbounded. This case corresponds to the parametric resonant condition. The other possibility is when
the parameter is an imaginary number; in that case the solution is bounded because it is the product of
two periodic functions. The behavior of the solution is independent of the initial conditions of the linear
differential equation (23). The main problem is to determine the form of the parameter in the argument
of the exponential function, which is a function of β and (ω0/�)2. Using standard asymptotic methods,
described in [18, pp. 267–294], we can find the bifurcation diagram which determines the stability of the
solution, this diagram is shown in Fig. 7. The darkened areas in the figure cover the values of ω0/� and β

where the solutions to Mathieu’s equation grow exponentially in time. These regions, which grow thin when
β goes to zero, are known as Arnold’s tongues. We have an infinite number of these regions of instability,
each region departing from one point of the line β = 0. These points are located at (ω0/�)2 = (n/2)2, for
n = 0, 1, 2, . . .. These regions define the parametric resonance of Mathieu’s equation and the main tongue
of the bifurcation diagram, shown in Fig. 7, corresponds to values of � close to 2ω0. The frequency of the
parametric perturbation must belong to the interval � ∈ (2ω0 − β/2, 2ω0 + β/2) for small values of β [18,
pp. 267–294]. As β grows, the region where parametric resonance occurs increases, as can be seen in Fig. 7.
This is a useful property because precise tuning to the resonant frequency is not needed in order to obtain
an unbounded solution of Mathieu’s equation.

Physically we cannot expect the oscillation of the water column to grow indefinitely in time since the
nonlinear terms of the full equation (18) will limit growth to a maximum amplitude of oscillation. Figure 8
shows a numerical integration of (18). The oscillation of the water column, perturbed by a parametric
excitation in the volume of the compression chamber, can be seen initially to grow exponentially with
time, starting from a small oscillation. After a certain point, growth is curbed until the oscillation reaches
a constant amplitude due to the nonlinear losses; in this case the energy that we supply to the system is
equal to the nonlinear losses.
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2
ω
Ω

β

Fig. 7 Bifurcation diagram of Mathieu’s equation. The
darked areas correspond to a unbounded solutions
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Fig. 8 Time evolution of the solution of Eq. (18). The ver-
tical axis correspond to the amplitude of the oscillation
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5 Asymptotic study of a nonlinear oscillation

The purpose of this section is to study the properties of the nonlinear solution of the full equation (18)
under parametric resonance. As before, the parametric excitation is produced by a periodic variation of
the volume of the compression chamber using the piston and the set of valves as shown in Fig. 5. The
nonlinear terms of Eq. (18) come from the nonlinear losses (5) and the adiabatic compression term (4).
In order to simplify the study of our full equation, we rewrite Eq. (18) by expanding in third-order Taylor
series and grouping terms:

ẍ + εζ ẋ2 + (
ω2

0 + ε cos(�t)
)
x + εαx2 + εβx3 + εκ ẋ|ẋ| = 0, (24)

where ω0 is defined in (22), ε, εαx2 and εβx3 are defined as follows:

εα = C
A2

c

2V2
0

(γ 2 + γ ), εβ = C
A3

c

6V3
0ε

(γ 3 + 3γ 2 + 2γ ),

εζ = 1
2L(1 + η)

ε = C
γAc

V0
bp, C = PA − ρgH

ρL(1 + η)
. (25)

The losses are represented by the parameters εκ = 1
L(1+η)

(K
2 + L

D f ). In order to perform an asymptotic
study of Eq. (24), we scale the nonlinear terms with the small parameter ε; the parametric perturbation is
also scaled with this small parameter. It is a standard procedure in mathematics to homogenize the order
of the nonlinear terms so that we can carry out asymptotic calculations in terms of a small parameter ε.

In order to simplify the study of Eq. (24), we split the problem in two parts. In the first one, only the non-
linear terms, which come from the adiabatic compression term, are considered. In the second case, we only
consider the nonlinear terms related to the losses of the system. In both cases we include the parametric
excitation and our goal is to find the size of the attainable growth of amplitude of the asymptotic solution.
In both cases we use the Multiple Scale Method. For good references of this method see [19, Chapter 4],
[20, Chapter 6], and [21, Chapter 9].

5.1 Case 1: Adiabatic compression

Equation (24) is reduced to the following form when nonlinear losses are disregarded:

ẍ + εζ ẋ2 + (
ω2

0 + ε cos(�t)
)
x + εαx2 + εβx3 = 0. (26)

We are interested in finding solutions close to parametric resonance, when the parametric excitation
frequency is close to 2ω0. From Floquet theory, this means that � should be within the main Arnold’s
tongue.

The Multiple Scale Method is an asymptotic procedure which considers that nonlinear dynamics take
place on a longer time scale than 2π/ω2

0. This method considers a set of time variables {ti} which are related
by the small parameter ε in this form: ti = 1

ε
ti+1, for i = 0, 1, 2, . . . The first time scale, t0, corresponds to the

period of one oscillation of Eq. (23). The scale t1 corresponds to a larger period of time when it is possible
to detect modulation phenomena of the nonlinear equation, etc. Because this method works in multiple
time scales, the solution of (26) should be a sum of terms which correspond to solutions at different time
scales:

x = x0(t0, t1, . . .) + εx1(t0, t1, . . .) + ε2x2(t0, t1, . . .) + · · · . (27)

It is important to remark that each term of this sum is a function of the set of time variables {ti}. In
nonlinear dynamics, the frequency of the solution is usually a function of the amplitude of the perturbation.
Thus it is reasonable to write the frequency of the solution as a power series of the perturbation parameter:

ω2 = ω2
0 + εω2

1 + ε2ω2
2 + · · · . (28)
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In this problem we have taken into account a set of time variables. In order to solve the differential
equation, it is necessary to redefine the differential operator which can be written in this form:

D = D0 + εD1 + ε2D2 + ε3D3 + · · · , (29)

where Di = d
dti

, for i = 0, 1, 2, . . ..
Now, we can compute the first and the second derivatives of function (27) using the definition of the

differential operator:

ẋ = D1x = D0x0 + ε(D1x0 + D0x1) + ε2(D2x0 + D1x1 + D0x2) + · · · ,

ẍ = D2x = D2
0x0 + ε(D2

0x1 + 2D1D0x0) + ε2(D2
0x2 + 2D1D0x1 + 2D2D0x0 + D2

1x0) + · · · ,
(30)

where Dj
kxi = djxi

dtjk
, for i, j, k = 0, 1, 2, . . ..

The other terms of Eq. (26) can be written in terms of the proposed solutions (27) and (28):

ω2x = ω2
0x0 + ε

(
ω2

0x1 + ω2
1x0

) + ε2(ω2
0x2 + ω2

1x1 + ω2
2x0

) + · · · ,

x2 = x2
0 + 2εx0x1 + ε2(x2

1 + 2x0x2
) + · · · , (31)

x3 = x3
0 + 3εx2

0x1 + · · · .

The next step is to take all the terms defined in Eqs. (30), (31) and substitute them in Eq. (26). We obtain
an infinite number of terms but they can be grouped in terms of powers of the small parameter ε. In this
way we obtain a set of an infinite number of linear differential equations:

ε0 : D2
0x0 + ω2

0x0 = 0, (32a)

ε1 : D2
0x1 + ω2

0x1 = −ω2
1x0 − 2D1D0x0 − αx2

0 − βx3
0 − ζ(D0x0)

2 − cos(2ω0t0)x0, (32b)

ε2 : D2
0x2 + ω2

0x2 = −ω2
2x0 − ω2

1x1 − 2D1D0x1 − 2D2D0x0−2αx0x1−3βx2
0x1

− cos(2ω0t0)x1 − D2
1x0 − 2ζD0x0(D1x0 + D0x1), (32c)

.

.

.

.

The corresponding differential equation of order εk is a linear equation in xk, the terms on the right-
hand side of this equation depending on the functions x0, x1, . . . , xk−1 which have been solved in the
previous steps; these solutions are functions of the time variables t0, t1, . . . , tk−1. Therefore, we have an
inhomogeneous linear differential equation for xk.

We start by solving the first equation of order ε0. Let x0(t0) be the solution of Eq. (32a); then the form
of this solution is

x0(t) = A sin(ω0t0) + B cos(ω0t0), (33)

where A and B are functions of the “slow times” t1, t2, . . .. We are able to solve Eq. (32b) because the
right-side terms of this equation are only functions of the time variables t0 and t1. Replacing Eq. (33) in
32b, we obtain the following linear differential equation:

D2
0x1 + ω2

0x1 = sin(ω0t0)
[
−ω2

1A + 2ω0D1B − 3
4
βA3 − 3

4
βAB2 + 1

2
A

]

+ cos(ω0t0)
[
−ω2

1B − 2ω0D1A − 3
4
βA2B − 3

4
βB3 − 1

2
B

]

+ sin(2ω0t0)
[
−αAB − ζω2

0AB
]

+ cos(2ω0t0)
[
α

2
A2 + α

2
B2 − 1 − ζ

2
ω2

0(B
2 − A2)

]
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+ sin(3ω0t0)
[
−β

4
A3 − 3

4
βAB2 − 1

2
A

]

+ cos(3ω0t0)
[
−3

4
βA2B − β

4
B3 − 1

2
B

]

+
[
−α

2
A2 − α

2
B2 − ζ

2
ω2

0(A
2 + B2)

]
. (34)

In this case, we must consider that A and B are functions of the “slow time” t1, such that D1A and D1B
are the derivatives of these functions with respect to the “slow time” t1.

The Multiple Scale Method requires that the set of solutions xi(t0, t1, . . .) must be bounded in time. In
order to achieve this, the terms which depend on sin(ω0t0) and cos(ω0t0), which are resonant, must be
eliminated by setting their coefficients to zero. In this form, we obtain two differential equations for the
amplitudes A(t1) and B(t1):

2ω0D1A = −
(

1
2

+ ω2
1

)
B − 3

4
βB(A2 + B2),

2ω0D1B =
(

− 1
2

+ ω2
1

)
A + 3

4
βA(A2 + B2).

(35)

In order to simplify the study of these nonlinear differential equations, we introduce the change of
variables A(t1) = r(t1) cos(θ(t1)) and B(t1) = r(t1) sin(θ(t1)):

2ω0D1r = − r
2

sin(2θ),

2ω0rD1θ = ω2
1r − r

2
cos(2θ) + 3

4
βr3.

(36)

We do not have to solve Eq. (36) because we are interested in finding the asymptotic behavior of the
amplitudes A and B. The dynamical evolution of these amplitudes can be determined by the limit sets of
Eq. (36). In this case, the limit sets correspond to the set of fixed points of (36), these points can be found
by equating to zero the right-side terms of Eq. (36). The set of fixed points are the following:

θ = nπ r = ±
√

2
3β

√
1 − 2ω2

1 or r = 0, (37)

where n = 0, 1.
In order to obtain the linear stability of the fixed points, it is necessary to evaluate the Jacobian matrix

at those points:

DF =

⎛
⎜⎜⎝

0 ± 1
2ω0

√
2

3β

√
1 − 2ω2

1

3
4ω0

β

√
2

3β

√
1 − 2ω2

1 0

⎞
⎟⎟⎠ . (38)

The corresponding eigenvalues of the fixed points are λ2 = ±(1−2ω2
1)/(4ω2

0). We have two elliptic fixed
points and one hyperbolic point. The origin is a hyperbolic point and there are two elliptic points located
at both sides of the origin. The elliptic points are equidistant to the origin where the hyperbolic point is
located. Figure 9 shows the phase space of Eq. (36).

For small initial values of A and B, we can observe that these functions have a periodic behavior; the
corresponding frequency of these functions is close to the eigenvalue of the elliptic point. The period is
then close to

T = 4π

ε

ω0√
1 − 2ω2

1

. (39)
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It is clear that the functions A and B have a longer period than the first-order solution x0(t0); the oscilla-
tory solution of (32a) is modulated by the amplitudes A(t1) and B(t1). The maximum attainable oscillatory
amplitude is then given by

Amax(β, ω1) =
√

2
3β

√
1 − 2ω2

1. (40)

A similar expression can be obtained for Bmax. It is worth noting that the maximum amplitude of
the oscillation is inversely proportional to the square root of the perturbation amplitude. Amax is also

proportional to
√

1 − 2ω2
1, the behavior of the amplitude with respect to the tuning parameter ω1. We

can determine how the amplitude decreases by a small shift of the frequency with respect to the main
parametric resonance 2ω0. When 2ω2 > 1, the solution of the nonlinear equation (26) falls outside the
main Arnold’s tongue such that the solution does not grow exponentially in time.

5.2 Case 2: Nonlinear losses

In previous works we have studied the effect of the nonlinear terms in the sea-water-pump equations [12,
14]. We found that vortex formation and radiation damping are the main losses of our system; these losses
are included in the term εκ ẋ|ẋ| in Eq. (24). In order to study the effect of this term, we perturb Mathieu’s
equation by including it. Our differential equation is now:

ẍ + εζ ẋ2 + (
ω2

0 + ε cos(�t)
)
x + εκ ẋ|ẋ| = 0. (41)

Similar to our previous case, we apply the Multiple Scale Method to obtain an asymptotic solution of
Eq. (41) such that we are able to compute the maximum amplitude of oscillation. The asymptotic method
cannot be directly applied to Eq. (41) because we cannot take the derivatives of |ẋ| close to zero. Never-
theless, we can replace the losses term ẋ|ẋ| by an analytic function which resembles closely the shape of
the graph of ẋ|ẋ|. Using the following identity ẋ|ẋ| = ẋ3/|ẋ| and considering that

ẋ ∼ ẋ0 = ω0 (A cos(ω0t0) − B sin(ω0t0)) ,

where x0 is the solution of (32a), we have the following approximation:

ẋ|ẋ| ∼ ẋ3

ω0
√

A2 + B2
. (42)

Up to now, our nonlinear differential equation is

ẍ + εζ ẋ2 + (
ω2

0 + ε cos(�t)
)
x + εκ

ẋ3

ω0
√

A2 + B2
= 0. (43)

We are interested in obtaining an approximate solution when the parametric excitation is at resonance,
� = 2ω0. We apply again the Multiple Scale Method to our Eq. (43) such that we can proceed similar to
case 1: in this case Eq. (43) is worked out similar to Eq. (26) such that we obtain similar equations from
(27) to (34).

The corresponding equation to (35) is now

2ω0D1A = −
(

1
2

+ ω2
1

)
B − 3

4
κω2

0A(A2 + B2)1/2,

2ω0D1B =
(

− 1
2

+ ω2
1

)
A − 3

4
κω2

0B(A2 + B2)1/2.

(44)
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Fig. 9 Phase space of the solution of Eq. (36) Fig. 10 Phase space of the solution of Eq. (45). Two global
attractor points can be readily identified

In order to simplify our study of Eq. (44), we carry out the change of variables A(t1) = r(t1) cos(θ(t1))
and B(t1) = r(t1) sin(θ(t1)):

2ω0D1r = − r
2

sin(2θ) − 3
4
κω2

0r2,

2ω0rD1θ = ω2
1r − r

2
cos(2θ). (45)

It is not necessary to solve Eq. (45), we only need to obtain the asymptotic behavior of r(t1) and θ(t1)
in order to estimate the attainable amplitude in the steady state. The set of fixed points of (45) can be

obtained by setting ω2
1 − 1

2 cos(2θ) = 0; then sin(2θ) = ±
√

1 − (
2ω2

1

)2. Therefore, the fixed points are the
following:

r = ± 2

3κω2
0

√
1 − 4ω4

1 and r = 0. (46)

We have three fixed points. Using the Jacobian matrix we can obtain the linear stability of this set of fixed

points. The eigenvalues of the two fixed points different to the origin are λ1 = 0 and λ2 = − 13
2

√
1 − 4ω4

1.
These points have a central manifold [22, pp. 117–138] but the phase space shows that they behave like
attractors (Fig. 10 shows the phase space). The origin is a saddle point.

It is noteworthy that there are two attractor points in Fig. 10, which means that any initial conditions
evolve towards one of these points. The maximum attainable amplitude of Eq. (41) is

Amax(κ , ω1) = 2

3κω2
0

√
1 − 4ω4

1. (47)

In this case, the solution does not exhibit a modulation phenomenon because A and B evolve to an
attractor in the “long-time” regime. Another fact is that the attainable amplitude is proportional to the
inverse of the coefficient κ . In contrast, in case 1 the maximum amplitude increases like the inverse of the
square root of β.

The solution of Eq. (41) grows exponentially at first until it reaches the maximum attainable amplitude.
The solution then keeps this amplitude without modulation. The maximum amplitude depends on the

factor
√

1 − 4ω4
1; this term determines the amplitude of the solution when the parametric excitation differs

from the resonant condition � = 2ω0. The parameter ω1 is the tuning term. As in the previous case,
we have parametric resonance if 2ω2

1 < 1. This solution belongs to the main Arnold’s tongue. For small
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Fig. 11 Three dimensional representation of the solution of Eq. (18) where the parametric excitation is given by (48). The
vertical axis represents the maximum amplitude of the numerical solution for fixed values of λ and σ . The ranges of λ and σ

are [0, 0·5] and [1·7, 2·2] respectively. The amplitude ranges from 0 to 0·25

values of the de-tuning parameter ω1, the variation of the amplitude is negligible because ω4
1 is too small.

A three-dimensional drawing of this Arnold’s tongue is shown in Fig. 11 (where sigma is the de-tuning
parameter and lambda is the magnitude of the perturbation term 2

3κω2
0
).

6 Numerical experiments

The asymptotic method is a powerful tool to understand the quantitative dynamics of the mechanical
systems in which we are interested. The last section was devoted to obtaining the maximum attainable
amplitude of oscillation of a water column which has an air-compression chamber at the top of the duct.
The water column is excited by a periodic variation of one of the system parameters. The nonlinear terms
bound the amplitude of oscillation of the OWC.

We are interested in verifying the accuracy of the asymptotic methods that were developed in the pre-
vious section. Our goal is to determine the maximum amplitude of oscillation by numerically simulating
the dynamics of the OWC with parametric excitation when the volume of air in the compression chamber
is modified periodically with a valve and piston. We solve the differential equation (18) using a numerical
procedure. We expect to obtain, at the starting point of our simulation, an exponential growth of the
oscillation’s amplitude since the nonlinear terms are small and the behavior of the differential equation is
essentially linear. After a certain period of time, the numerical solution should reach a maximum amplitude
defined by the nonlinear terms.

We are interested in studying the behavior of the numerical solution for a set of values of the frequency
and amplitude of the parametric excitation in our model. For any pair of frequency and amplitude values,
we obtain a numerical solution of Eq. (18) for a long period of time from which we can compute the
maximum amplitude of oscillation. Using this information we are able to compare the numerical and
asymptotic values of the attainable growth of the amplitude.

In order to define the value of the parameters which are involved in our differential equation (18), we
resort to the numerical model of a 1:25 scale wave-driven sea-water pump as described in [12, 14]. Table 1
shows the values that we use in our numerical simulation. We must remark that the set of data in Table 1
corresponds to a real experiment with a scale-model of a wave-driven sea-water pump tested in a wave
tank.
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Fig. 12 Maximum amplitude of oscillation of the solution
of Eq. (18) versus σ . Each curve is obtained for a fixed value
of λ. Curve V joins the maximum values of each curve

Table 1 Parameter values

Ac = 0·002463 m2 a = 0·001130 m2

γ = 1·4 fr = 0·06064
L = 4·325 m K = 0·1
K
2 + L

D fr = 4·4683 V0 = 0·011583 m3

ω0 = 2·7902 1
s H = 1·26 m

PA−ρgH
ρ

= 88·961 m2/s2

The volume of the compression chamber is varied periodically in time as

V = V0 (1 + λ cos(σω0t)) , (48)

where λ is the amplitude of the parametric perturbation; this parameter represents the ratio 	V0/V0. The
parameter σ represents the tuning respect to the natural oscillation frequency of the OWC, ω0, where σω0
is the frequency of the parametric excitation.

We are interested in computing the maximum amplitude of the numerical solution of (18) for values of
σ close to 2, which corresponds to the parametric resonance in the linear model. We use a Runge-Kutta
method of order 7–8 to solve the differential equation (18); this routine has a variable step in time. For
each value of σ and λ, we compute the numerical solution of (18), with a simulation time of 500 units. The
maximum time step of the integration routine is 0·2. We set a maximum error for each step of integration
as 10−11. The initial conditions are set to the values, x0 = 0·0001 and ẋ0 = 0.

The set of values of λ and σ that we use in our numerical experiment belong to the following intervals:

σ ∈ (1·7, 2·2), λ ∈ (0·01, 0·5), (49)

where the step size of λ is 10−4 and for σ is 10−2. Thus, we performed 250,000 numerical simulations of our
differential equation. The computations were made with a cluster of 34 Pentium processors at 800 MHz.
The solutions of this experiment are shown in Fig. 11, where the vertical axis corresponds to the maximum
attained oscillation amplitude for each pair of values σ and λ. This figure looks like a three-dimensional
Arnold’s tongue.

We can plot the amplitude of the oscillation versus the value of the excitation frequency (Fig. 12).
Each curve has a fixed value of the perturbation parameter λ. The line crossing the said curves joins their
maximum values.

The main interest of this section is to compare the asymptotic estimation obtained in the previous section
to the numerical results in Figs. 11 and 12. First, we must define the value of the parameters which appear
in Eq. (24) in terms of the value of the parameters shown in Table 1.

Our first step is to expand the adiabatic term in a power series (4) with respect to the variable Ac/V0. We
only need to take into account terms up to order three. Because the volume appears in the denominator of
the natural oscillation frequency (11), we must replace the volume by the expression shown in Eq. (48). In
this form we can expand the volume in a Taylor series with respect to the small parameter λ. After that, we
are able to write the corresponding differential equation of the water-column oscillations using the data of
the real experiment given in Table 1:

ẍ + 0·11347ẋ2 + 1·03315ẋ|ẋ| + (
8·391 + 2·918λ2 + 5·978λ cos(σω0t)

)
x + 1·56247x2 + 0·37654x3 = 0. (50)
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Fig. 13 Amplitudes from curve V in Fig. 9 versus λ
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graph of Eq. (53). The dots correspond to curve V shown in
Fig. 12

Equation (50) is similar to Eq. (24). Comparing the linear terms in both equations we get that ω2
0 =

8·391 + 2·918λ2 and ε cos(�t) = 5·978λ cos(σω0t). In this form, the small parameters λ and ε are related
in the following way, ε = 5·978λ. It follows that the coefficients of the nonlinear terms are related as
εα = 1·56247, εβ = 0·37654 and εκ = 1·03315. Replacing ε in these relations, we obtain

κ = 0·1728λ−1,
α = 0·2613λ−1,
β = 0·0629λ−1.

(51)

The main nonlinear term of Eq. (50) corresponds to the losses term; therefore we can expect that the
maximum amplitude of oscillation can be computed using Eq. (47) for case 2:

Aκ = 2

3κω2
0

√
1 − 4ω4

1 = 0·4947λ

√
1 − 4ω4

1. (52)

We can now show that the amplitude Aκ is a good estimate of the numerical computation of the maxi-
mum amplitude of Eq. (18) when we use the value of the parameters given in Table 1 and the volume of
the compression chamber is defined by Eq. (48). Figure 13 shows the value of Aκ as well as the amplitude
computed numerically for values of λ from 0 to 0·5. Both graphs match satisfactorily, even for large values
of λ where the asymptotic approximation is no longer strictly valid.

Finally, it is interesting to observe the shape of the set of curves in Fig. 12, which have been computed
in our numerical experiments. Each curve represents the maximum amplitude of the oscillation for a fixed
value of the perturbation parameter λ given in Eq. (48). It is interesting to notice that the maximum of
these curves does not correspond to the same value of �/ω0. The line in Fig. 12 which joins these maxima
bends towards the right side of the figure. Using the asymptotic calculations, we can observe that the linear
part of Eq. (50) is given by ω2

0(λ) + 5·978λ cos(σω0t), where ω2
0(λ) = 8·391 + 2·918λ2. In this case the linear

frequency of Eq. (50) is a function of λ. Using the expression of ω2
0(λ), we can compute

�/ω0(λ) = 2 × √
8·391√

8·391 + 2·918λ2
� 2 + 0·347λ2. (53)

Now we plot (�/ω0(λ)) in Fig. 14 as well as the value of the maximum amplitudes computed numerically.
The graph of (�/ω0(λ)) is slightly above the numerical points. Nevertheless the asymptotic never differs
more than 0·4% from the numerical calculations.
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7 Energy balance

An important step in the study of the parametric resonance in an OWC is to compute the amount of
energy that we must supply to the system in order to sustain the attained oscillation amplitude. The source
of energy in our model, which was described in a previous section, corresponds to the work done by the
piston which maintains the mean level of the water surface in the compression chamber (see Fig. 3). The
energy output of this model comes from the damping terms of the OWC.

Lorenceau obtained a rate of change of energy which is proportional to ẋ2|ẋ| (see Eq. (6)) with which
we can compute the amount of energy loss by the system during one oscillation. On the other hand, we can
also obtain the work done by the piston during one oscillation. Our goal is to compare these two energies
and to show the way they depend on the parameter λ. It is important to obtain these relations because we
have shown how the maximum amplitude depends on λ. In this way, we can estimate the cost, in terms of
energy, of obtaining a prescribed amplitude of oscillation in terms of this parameter.

We compute first the input energy, that is, the work done by the piston during one cycle. The force that
the piston exerts corresponds to the difference of pressure between the compression chamber, P(t), and
the atmospheric pressure PA. The variations of P(t) come from the oscillation of the water column and
the displacement of the piston. Let P0 and V0 be the corresponding value of the pressure and the volume
of the compression chamber in equilibrium (without oscillations); in that case the steady-state pressure is
P0 = PA − ρgH. If we consider an adiabatic compression, the volume and pressure in the compression
chamber are related to the steady-state values by

PVγ = P0Vγ

0 . (54)

The volume V changes in time and it depends on the position of the water column, x(t), and also the
position of the piston (see Eq. (48)); hence this volume can be written as follows:

V(t) = V0 + Acx(t) + λV0 sin(2ω0t), (55)

where Ac is the area of the column and x(t) is the solution of Eq. (50), that is, x(t) = Ak sin(ω0t) (see
Eq. (52)).

We can use Eqs. (54) and (55), also defining Âkλ = AkAc, and obtain the pressure of the compression
chamber:

P(t)=P0

(
V0

V0+Âkλ sin(ω0t)+λV0 sin(2ω0t)

)γ

. (56)

The work done by the piston is the integral of the force ApP(t) and the velocity of the piston vp(t) in
one cycle:

Wp =
2π/ω0∫

0

ApP(t)vp(t)dt, (57)

where Ap is the area of the piston. We can see that Apvp(t) = d
dt Vp(t), where Vp is the volume of the piston

Vp(t) = λV0 sin(2ω0t).
In order to obtain an estimate of the work done by the piston, for small values of the parameter λ, we

compute its Taylor expansion around λ = 0 up to order four. The estimated value of Wp is then

Wp �
2π/ω0∫

0

P0

(
1 + γ g(t)

V0
λ + γ (γ + 1)g2(t)

2V2
0

λ2 + γ (−3 + 5γ − γ 2)

V3
0

λ3

)
2λV0ω0 cos(2ω0t)dt, (58)

where g(t) = Âκ sin(ω0) + V0 sin(2ω0t). The value of this integral represents the amount of energy that we
must supply to the OWC in order to keep the attained maximum oscillation of the water column:

Wp � −π

2
P0

Â2
κγ (γ + 1)

V0
λ3. (59)
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We now compute the output energy of our system. The losses of the system correspond to the energy of
the OWC which is lost every cycle. From Eq. (6), the amount of energy lost during each oscillation is

WL =
2π/ω0∫

0

dE
dt

dt =
2π/ω0∫

0

Acρẋ2(t)|ẋ(t)|dt. (60)

Substituting ẋ(t) = d
dt (Âκλ sin(ω0t)), we obtain:

WL = 8
3

Â3
κω2

0λ
3. (61)

We have obtained the input and output energy of our system. These two energies Wp and WL must
coincide because there are no other energy sources or sinks in the system.

It is important to remark that the work done by the piston and the losses of the OWC are proportional
to λ3, while the attained amplitude of oscillation of the water column depends linearly on the parameter
λ. Therefore, the cost of the parametric oscillation in terms of energy is proportional to λ3.

8 Conclusions

It has been shown that parametric resonance may be a novel way to induce larger oscillations in an OWC
system. In classical mechanics, energy is transferred more efficiently by parametric resonance than when
an external excitation occurs. The exponential growth of the amplitude provides a very fast response for
any initial perturbation and the maximum attainable amplitude is greater than in common resonance.

With the type of energy losses found in typical OWCs, in parametric resonance, once the system reaches
the maximum amplitude, the oscillation does not modulate even if it is not exactly in tune. This is in contrast
to normal resonance where modulation always occurs when out of tuning. The absence of modulation in
parametric resonance is due to the existence of two attractor points in Eqs. (44) and (45), which means that
the amplitudes of oscillation A and B evolve to one of these attractor points such that their amplitude is
maintained. This property depends on two facts: the dominant nonlinear term of the equation of motion is
the losses term ẋ|ẋ| and the main excitation of the system is the parametric resonance. In addition to this, the
amplitude of the oscillation in parametric resonance is less sensitive to variations in the resonant frequency.

We have shown two possible implementations of the parametric excitation of an OWC. Figure 3 repre-
sents a simple method to produce parametric resonance, although in this particular scheme, normal-reso-
nance terms compete with the parametric excitation. Therefore, we expect that the attained amplitude of
oscillation of the water column comes from the combination of parametric and forcing resonances. Figure
4 shows that the initial oscillations correspond to those driven by the forcing terms. After some time, the
oscillation amplitude behaves like a pure parametric resonator; in particular, we can appreciate that there
is no modulation in the oscillation amplitude.

The size of the maximum oscillation amplitude comes from the contribution of the different excitation
terms. We can compute this amplitude as the sum of the single contribution of each resonance. Considering
the case of Eq. (12) and its corresponding nondimentional form (13), this last equation contains a small
parameter |βp| � 1. The expansion of this equation in powers of βp is shown in Eqs. (14)–(17). The main
excitation terms of the system correspond to the parametric resonance (γ + 1)Wβp cos(�

ω̂
t)x and also the

forcing term Wβp cos(�t). An important fact is that the parameter βp appears linearly in both terms. If we
take into account only the parametric excitation, the dependence of βp in the amplitude of oscillation is
of order O(βp). For the case of forcing resonance, the amplitude is of order O(

√
βp) [14, pp. 1210]. We can

conclude that the main contribution to the oscillation amplitude corresponds to the forcing resonance if
|βp| � 1 while the parametric resonance dominates the amplitude when βp is of order one. Therefore, we
can expect that amplitude exhibits two different rates of growth with respect to βp as shown in Fig. 15. The
transition point is the value of βp where we have the intersection of the two straight lines.
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Fig. 15 Graph of the amplitude of oscillation versus the
parameter βp
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Fig. 16 Possible implementation of a parametric excitation
of an OWC. The volume of the compression chamber is
changed by the action of the piston and the aperture of the
set of valves
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Fig. 17 Bi-directional water pump device

The implementation of a mechanical device which achieves only parametric resonance in an OWC is
shown in Fig. 5. This device is more complex because we have added a mechanical valve in order to emulate
the variation of the amount of air in the compression chamber. A better approach can be seen in Fig. 16
which shows an arrangement of valves to modify the amount of air in the compression chamber gradually.
The piston attached to the main chamber modifies the equilibrium level of the water column. The behavior
of these devices would be mainly driven by the parametric excitation.

Parametric resonance opens the way to new designs and different uses of OWCs. In the case of fluid
pumps, not necessarily of seawater, this phenomenon could be used for bi-directional flow. Our proposal
of the implementation of a bi-directional pump device which uses the energy of ocean waves is shown in
Fig. 17. In this case the sea-water pump is excite by the volume variation of the compression chamber. The
idea is to replace the oscillating piston in Fig. 16 with an oscillating water column which is in resonance
with the ocean waves. This water column produces parametric resonance on the water pump. In this form,
the water column supplies the power to the water pump, the energy being obtained from the water waves.
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